Signal Processing with Near-Neighbor-Coupled Time-Varying Quantum-Dot Arrays

نویسندگان

  • Árpád I. Csurgay
  • Craig S. Lent
چکیده

The Nano-Devices Group at the University of Notre Dame proposed a new device that encodes information in the geometrical charge distribution of artificial (or natural) molecules. Functional units are composed by electrostatic coupling. In these units, processing takes place by reshaping the electron density of the molecules, and not by switching currents [1]. Signal processing potential of next-neighbor-coupled cellular nonlinear networks (CNN’s) has been recently explored with the conclusion that local-activity of the cells is necessary to exhibit complexity [2]. It will be shown that Coulomb-coupled time-invariant artificial molecules behave like nonlinear locally passive devices, thus signal-power-gain or multiple equilibria cannot be achieved by integrating them. However, the signal input–output relation of strongly nonlinear molecules can be varied in time by adiabatic pumping, called clock control. It will be shown that strongly nonlinear time-varying molecules can transform the necessary amount of clock energy into the signal flow, thereby enabling the network of molecules to perform signal processing.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Conductance in quantum wires by three quantum dots arrays

A noninteracting quantum-dot arrays side coupled to a quantum wire is studied. Transport through the quantum wire is investigated by using a noninteracting Anderson tunneling Hamiltonian. The conductance at zero temperature develops an oscillating band with resonances and antiresonances due to constructive and destructive interference in the ballistic channel, respectively. Moreover, we have fo...

متن کامل

Conductance in quantum wires by three quantum dots arrays

A noninteracting quantum-dot arrays side coupled to a quantum wire is studied. Transport through the quantum wire is investigated by using a noninteracting Anderson tunneling Hamiltonian. The conductance at zero temperature develops an oscillating band with resonances and antiresonances due to constructive and destructive interference in the ballistic channel, respectively. Moreover, we have fo...

متن کامل

Full capacitance matrix of coupled quantum dot arrays : static and dynamical effects

We numerically calculated the full capacitance matrices for both one-dimensional (1D) and two-dimensional (2D) quantum-dot arrays. We found it is necessary to use the full capacitance matrix in modeling coupled quantum dot arrays due to weaker screening in these systems in comparison with arrays of normal metal tunnel junctions. The static soliton potential distributions in both 1D and 2D array...

متن کامل

Time-dependent analysis of carrier density and potential energy in spherical centered defect InGaAs/AlGaAs quantum dot (SCDQD)

Interaction and correlation effects in quantum dots play a fundamental role in defining both their equilibrium and transport properties. Numerical methods are commonly employed to study such systems. In this paper we investigate the numerical calculation of quantum transport of electrons in spherical centered defect InGaAs/AlGaAs quantum dot (SCDQD). The simulation is based on the imaginary time...

متن کامل

Time-dependent analysis of carrier density and potential energy in spherical centered defect InGaAs/AlGaAs quantum dot (SCDQD)

Interaction and correlation effects in quantum dots play a fundamental role in defining both their equilibrium and transport properties. Numerical methods are commonly employed to study such systems. In this paper we investigate the numerical calculation of quantum transport of electrons in spherical centered defect InGaAs/AlGaAs quantum dot (SCDQD). The simulation is based on the imaginary time...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2000